On the Strong Metric Dimension of Cartesian Sum Graphs
نویسندگان
چکیده
منابع مشابه
On the Strong Metric Dimension of Cartesian Sum Graphs
A vertex w of a connected graph G strongly resolves two vertices u, v ∈ V (G), if there exists some shortest u−w path containing v or some shortest v−w path containing u. A set S of vertices is a strong metric generator for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong metric generator for G is called the strong metric dimension ...
متن کاملOn the Metric Dimension of Cartesian Products of Graphs
A set of vertices S resolves a graph G if every vertex is uniquely determined by its vector of distances to the vertices in S. The metric dimension of G is the minimum cardinality of a resolving set of G. This paper studies the metric dimension of cartesian products G H. We prove that the metric dimension of G G is tied in a strong sense to the minimum order of a so-called doubly resolving set ...
متن کاملOn the strong metric dimension of Cartesian and direct products of graphs
Let G be a connected graph. A vertex w strongly resolves a pair u, v of vertices of G if there exists some shortest u − w path containing v or some shortest v − w path containing u. A set W of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of W . The smallest cardinality of a strong resolving set for G is called the strong metric dime...
متن کاملThe metric dimension and girth of graphs
A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...
متن کاملThe Metric Dimension of Circulant Graphs and Their Cartesian Products
Let G = (V,E) be a connected graph (or hypergraph) and let d(x, y) denote the distance between vertices x, y ∈ V (G). A subset W ⊆ V (G) is called a resolving set for G if for every pair of distinct vertices x, y ∈ V (G), there is w ∈ W such that d(x,w) 6= d(y, w). The minimum cardinality of a resolving set for G is called the metric dimension of G, denoted by β(G). The circulant graph Cn(1, 2,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Informaticae
سال: 2015
ISSN: 0169-2968,1875-8681
DOI: 10.3233/fi-2015-1263